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Xilton 0. 3 o r ; p o n  
NASA Flighk Resezrcn Center 

Edwards, C a l i f .  

The advantages of simulation hme been expounded f o r  years by engi- 
neers and p i l o t s .  
02 t he  predict ion capab i l i t y  of simulation i n  t h e  development of a new 
a i r c r a f t  or f l i g h t  vehicle.  
t he  simulation be t o  an t i c ipa t e  t h e  many possible  problems t h a t  could be 
encomtered? 

We cannot present ly  ignore or f a i l  t o  take advantage 

Tne p e s t i o n ,  however, is: Eow complete m u s t  

Tnis paper describes a few of  the problems encountered on X-15 f l i g h t s  
t h a t  were not an t ic ipa ted  during simulation. 
consequences of simulation def ic iencies  r e su l t i ng  from the  omission of 
complex and cos t ly  f l ight-enviroment  conditions. 

Xany of these  problems were 

The X-15 f l i g h t  experience covers a wide range - .  of - environmental condi- - I 
t i o n s  from high longitudinal-acceleration boost p r o f i l e s  t o  low lirt-drag- 
r a t i o  landings. 
o f  pe r t inen t  points  regarding simulation and simulation requirements. 

This o f fe r s  a wique  opportunity t o  comment on a number 

Figure 1 shows t h e  hardware mockup of t h e  X-13 cockpit  and control  
system with simulated control  surfaces. Actual e lec t ronic  control  com- 
ponents were used as simulator hardware. Some of t he  analog computing 
equipment and the  p l o t t e r  and recorders used i n  t h e  simulation a re  a lso 
shown . 

I 

of motion, which represented the  X-15 aerodynamics, analog computers were 
used. 
Mach number and angle of a t tack.  

Nonlinear aerodynamic var iables  were programed as a function of 

. The simulator w a s  f requent ly  updated i n  l i n e  with f l i g h t  da ta  and 
hardware modifications t o  insure accurate performance and c o n t r o l l a b i l i t y  
matching f o r  subsequent f l i g h t  simulations. The wind-tunnel der ivat ives ,  
i n  general ,  proved t o  be fa i r ly  accurate, and f e w  changes were required 
t o  improve t h e  simulation of t he  acsual vehicle.  Such f ac to r s  as motion, 
accelerat ion,  and visual displays were o,nitted because of t he  added 



c o q i e x i t y ,  cost, and nonavai labi l i ty  of t h e  necessary equipment. Other 
by13c's of s i m l a t i o n s ,  such as tne  7-104 a d  t h e  centrifuge, were resorted 
bo i n  an a t tenpt  t o  an t ic ipa te  problem resu l t ing  from t'nese omissions. 
But, there  were s t i l l  problem. T'nis, of course, i s  one of t he  reasons 
for  ac tua l  f l i g h t  tes t ing-- to  deternine whether there  a re  problems t h a t  
have not been anticipated.  

L 

i 

EFFECTS OF IMFROER SzMlTLATION 

?or any type of s imdat ion ,  it i s  l og ica l  t o  question how complete 
t h e  simda-tion should be Ln terms of cockpit duplications, systems 
operation, and flight-environment effects .  The X-15 experience shows 
tha t ,  at  l e a s t  f o r  p i l o t  t ra ining,  the  cockpit simulation must be as 
complete as possible.  

Cockpit 

Two examples of seeAingly  minor differences between t h e  simulator and 
the  airplane i l l u s t r a t e  the importance of cockpit duplication. 
for  exanple, m incider;t i n  which the  p o l a r i t y  of the  simulator switch t h a t  
energizes t h e  t r i m  button w a s  d i f f e ren t  from the  switch i n  t h e  airplane.  
The p i l o t  pract iced his f l i g h t  plan i n  t h e  simulator and became p ro f iden$ ;  
however, i n  t h e  airplane t h e  practiced tec'hnique was no longer useful. 
t'ne t i n e  he made the  necessary correction, he w a s  so far o f f  t h e  desired 
f l i g h t  p o f i l e  t ha t ,  for research purposes, t h e  f l i g h t  w a s  of l imi ted  
usefulness. 

Consider, 

By 

On another occasion, an instrument w a s  d i f f e ren t  i n  t h e  airplane than 
The p i l o t  checked t'ne panel fo r  t h e  pos i t ion  of t h e  i n  the  simulator. 

needle ra ther  than f o r  t he  ac tua l  reading. 
f l i g h t  being of f  t h e  desired plan. 
simulator and airplane were r ead i ly  apparent p r i o r  t o  f l i g h t ;  however, t h e  
consequences were not f u l l y  recognized u n t i l  a f t e r  the  ac tua l  f l i g h t  w a s  
made. 

This a lso resu l ted  i n  t h e  
Both of these differences between 

Systems 

Fai lure  t o  properly duplicate systems operation and t h e  in - f l i gh t  
consequences are  i l l u s t r a t e d  i n  the  following example. The hydraulic out- 
pu t  of t he  pumps used t o  supply the  simulator control system did not match 
t h a t  of t h e  airplane.  During an i n - f l i gh t  maneuver, t h e  p i l o t  experienced 
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i c o q l e t e  l o s s  of a r t i f i c i a l  p i t ch  EA roll daxping and an unstable con- 
trol systern because of controL-systea feedback cha rac t e r i s t i c s  ( f i g .  2 ) .  
AI icvest igat ion of t h e  czuse or" t h e  systeii i n s t a b i l i t y  indicated t'nat 
the kigh gain capabi l i ty  of t'nis adzptive system could not only sa tu ra t e  
t h e  control-surface rates, buz the  actuator servo r a t e  as well. The 
? i t ch  gain w a s  a t  a m a i m u m  just pr ior  t o  t h e  maneuver. When t h e  naneu- 
ver was i n i t i a t e d  by the  p i l o t  with a r e l a t i v e l y  low-rate p i t ch  and roll 
cormand, t he  system responded with a s igna l  t o  t h e  actuator  servo t h a t  
exceeded the  r a t e  capabi l i ty .  Systein damping of t he  airplane response 
began with t h e  f i r s t  motions and, since the gain w a s  a t  a maximum, t h e  
daxping s ignals  were a l so  asking f o r  more servo actuator  r a t e  than could 
be s q 2 l i e d .  
p i t ch  gain, which t h e  system eventually scheduled. This i n s t a b i l i t y  
could not be d q l i c a t e d  i n  the  sirnillator u n t i l  t h e  hydraulic-system out- 
put  wzs increased t o  match t h a t  of tine airplane.  

Damping of these  motions was achieved with a reduction i n  

S t ruc tura l  &vi rorment 

An orAssion i n  properly duplicating the  flight-environment e f f e c t s  
almost caxsed the  loss  of an a i rplare .  Duxing reent ry  from an ea r ly  
alt i tude-buildup f l i g h t ,  a severe vibrat ion a t  13 cps w a s  experienced by 
the  X-13 f o r  agproxirately 1 Icicxte. After t h e  p i l o t  lowered t h e  s t a b i l i t y -  
auginentation-system gain, and with an increase i n  dynamic pressure, t h e  
shaking stopped. The p i l o t  landed without fu r the r  incident.  An investia.  
gation i n t o  t h e  cause of t h e  vibrat ion ( f ig .  3) indicated t h a t  a t  low 
dynamic pressure i n  t h e  absence o f  aerodynamic damping the  l i g h t l y  damped 
hor izonta l - ta i l  s t ruc ture  was excited a t  i t s  na tu ra l  frequency by p i l o t  
cont ro l  i np i t s .  
by t h e  stability-augmentation-systeri gyros which closed the  loop through 
t'ne cont ro l  system. 
base simulator i f  sur"ficient consideration had been given t o  t h e  possi-  
b i l i t y  of i t s  occurrence i n  f l i g h t .  Tne solut ion t o  t h e  problem w a s  
developed on t n e  simulator. A redesign of -the augmentation-system f i l t e r  
was required t o  ancouple .the system. The redesigned f i l t e r  w a s  checked 
out on t h e  fixed-base s i m d a t o r  t o  insure proper attenuation a t  13 cps. 
This change avoided the  shaking problem. 

The X-15 i n e r t i a l  reaction t o  t h i s  o sc i l l a t ion  w a s  sensed 

This problex could have been predicted on t h e  fixed- 

Acceleration, Motion, and Visual Cues 

Even if  t h e  coc'kpit and control  systems are duplicated, t h e  omission 
of o the r  cues, such as acceleration, motion, and v i sud ,  can r e s u l t  i n  
ser ious problems. 
i l l u s t r a t e  t h e  possible  e f f ec t s  on a mission. 

Some examples a re  given i n  t h e  following sect ions t o  
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$xceierzt:on.- Accelerakios cues were considered an unnecessary 
lii(i;ITjr i n  the X-13 simKLator. 
by+cal rizss:on sizxlazions on tke U.S. Savy centrirfuge a t  Johnsville,  Pa., 
buz not Tor t r a in ing  simulation tprposes. 
CeterrLne the  detrimental  e f f ec t s  of aceeleration on con t ro l l ab i l i t y  
during t y y i c a l  speed and d t i t u d e  rdssions. 

The o r i g i m l  X-15 p i l o t s  were exposed t o  . .  
i.,: 

Tnese t e s t s  were pr imari ly  t o  

Later X-15 p i l o t s  had par t ic ipa ted  i n  various centr i fuge programs 
but had co t  been subjected t o  X-13 mission accelerat ions during t h e  
L braining period. 

The l ack  of accelerat ion capabi l i ty  i n  t h e  X-15 sirr;ulator has not 
r e s d t e d  i n  any serious problem during t h e  f l i g h t  program. 
been surpr ises ,  though, which 'nave had some subt le  e f f ec t s  on p i l o t  
impessions as  a r e s d t  of t h i s  o,nission. 

There have 

A t-ypical d t i t d e  mission i s  shown i n  f igure  4. Normal and longi- 
tu6ina.l accelerations,  az ana ax, are  shown i n  t h e  lower p lo t .  Pr ior  

t o  my f i rs t  f l i g h t ,  my p rac t i ce  simulation had been done i n  a relaxed, 
'read-forward posi t ion.  The longitudinal accelerat ion at  engine l i g h t  
forced my head back i n t o  t h e  headrest and prevented even helmet ro ta t ion .  
Tne instrment-scan procedure, dce t o  t h i s  head pos i t ion  and a s l i g h t  
tunnel-vision e f fec t ,  was qui te  d i f fe ren t  than an t ic ipa ted  and practiced. 
The accelerat ion buildup during engine burn (4g m a )  i s  uncomfortable 
enough t o  convince you t o  shut t h e  engine down as planned. This i s  t h e  '* 
f i rs t  airplane I ' v e  flown t h a t  I've been happy t o  shut down. 

Engine shGtdown does not always re l ieve  .the s i tua t ion ,  though, since, 
i n  most cases, t h e  decelerat ion i m e d i a t e l y  a f t e r  shutdown has you hanging 
from t h e  r e s t r a i n t  harness, and i n  a strange pos i t ion  f o r  controll ing.  

Some of t h e  more subt le  e f f ec t s  of  t he  lack  of acceler'ation during 
simulation are apparent t o  even experienced X-13 p i l o t s .  
corxnon t o  experience ver t igo dwing  various f l i g h t  phases. I n i t i a l  
r o t a t i o n  t o  t h e  desired climb angle requires f ro= 20 seconds to ,  i n  some 
cases, 40 seconds depending on desired climb angle. 
i s  2.0. The time required seems much longer than it ac tua l ly  is. The 
horizon i s  l o s t  a t  a p i t ch  angle of abou-b 2-0' beczise of t h e  h~125 -nnnit.ion r - -- -- - -- 
and window s ize .  The r e s u l t  i s  t h a t  t h e  p i l o t  i s  ce r t a in  he i s  going 
s t r a i g h t  u;, and on a nmber of occasions has pushed over t o  look f o r  t h e  
horizon. This has resu l ted  i n  low peak a l t i t udes  a number of times, 
p a r t i c u l a s l y  when tkie El vernier or p i tch-a t t i tude  ind ica tors  have been 
i n  e r r o r  or f a i l e d  t o  operate properly. 

It i s  qui te  

The average ro t a t iona l  g 
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Also ,  it i s  hard t G  zdjust t~ %?,e d m r t i o n  of high g ( 3  t o  6) re- 
cplred t o  ePfect a c'r,mge i n  flighz g & < ~  a't h n e r s o n i c  speeds. 
out Prom 350,000 f e e t  with a mgat ive  LOo f l lgh t -pa th  angle a t  
requires  a.n average 5g f o r  20 seconds. 
requires  3g f o r  20 seconds. 

A pul l -  
M = 5.4 

A 10' heading change at  N = 5.3 

On t h e  low-g side,  an i n i t i a l  climb angle of 2'3" at a ve loc i ty  of 
3000 f p s  requires  40 seconds of zero g f l i g h t  t o  k i l l  o f f  the rate of 
cl izb,  during which time t h e  airplane has climbed an addi t iona l  
40,000 fee t .  

A t  low dynamic pressures (less than 100 ps f ) ,  90" bank angles f o r  
prolonged periods may only r e s u l t  i n  10" t o  20" heading changes because 
of t h e  lack  of g capabi l i ty .  

These si'iuations a re  accurately predicted by most six-degree-of- 
freedom simulations, but seem qui te  dir 'ferent when ac tua l ly  experienced 
i n  f l i g h t ,  because of t h e  tendency t o  r e l a t e  g-time s i tua t ions  t o  previous 
experience. Subsonic f l i g h t  experience shows much greater  f l ight-path 
chmges under t h e  sane conditions, and you are convinced i n  most high- 
ve loc i ty  s i tua t ions  t h a t  yoi; have exceeded t h e  required f l ight-path 
change. 

Visual.- Visuai cues were a l so  omitted i n  the  X - P j  simulator. As a 
r e s u i t ,  severa l  important phases of f l i g h t  could not be r e a l i s t i c a l l y  '. 
evali;ated. Approach, flare, and landing have always been accomplished 
by t h e  p i l o t  using out-the-window information. Using visual cues, t h e  
p i l o t  i s  continually adjusting h i s  s i tua t ion  r i g h t  up t o  touchdown, 
s ince his cayabi l i ty  t o  judge distances, heignts, and closing rates i s  
impoving with proximity t o  t h e  ground. 
con t ro l  input, and the  amplitudes ac-ludlly used during an X-15 approach 
and landing exceeded those used i n  my  otkier mission phaser These con- 
t r o l  xotions had not been I'illly appreciated during fixed-base or airborne 
simulations. Control-surf ace r a t e  capabi l i ty  w a s  subsequently increased 
t o  insure  against  a possible pilot-induced o s c i l l a t i o n  during approach, 
f lare,  and landing. 

The control  r a t e s ,  frequency of 

A pos t f l a r e  r ioa t ing  pru'uiezi, i j e r i i 5 ~  ts tk X-3.5 with t h e  adaptive 
con t ro l  system, w a s  not ant ic i2ated because of t h e  i n a b i l i t y  t o  properly 
sirnulate f l a e  and landing. This par t icu lar  problem i s  a result of t h e  
l a c k  of speed s t a b i l i t y  i n  a rzte command cont ro l  system. Lack of speed 
s t a b i l i t y  was a9parent from simuhtion,  but t h e  e f f ec t s  on approach, flare, 
and landing were not obvious. Airspeed had t o  be monitored more c lose ly  
during approach and nose-down t r i m  used t o  make  t h e  pos t f l a r e  cont ro l  
force f e e l  normal during deceleration. 
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Xaki-Zez lz i6 ing  loads ?:ere rzc> :?if;r?er than mt i c ipa t ed .  R e a l i s -  
- .  . - .  -_ ,IC l a n c c g  s;,m;%&;ions TL&>% > w e  indicazed t h i s  condition. 

e>:ccss1ve T r p -  L L & L - g e z  loa,.ds were d-ie -lo a, n a t v a l  2 i l o t  control  response. 
Tnese 

2 r e s d t  of  gear geometry, 01; main-gea- touckdown, t h e  nose tended t o  
p i t ck  dowm r q i d l y .  
responded with increased nose-up s t a b i l i z e r  . 
prod-dced by the  la rge  horizontai-s tabi l izer  def lect ions added t o  t h e  re- 
bomd loads following nose-gem contact could exceed by 50 percent t h e  
i n i t i a l  main-gear loads. 
t o  a l l e v i a t e  these aerodynamic loads. 

The p i l o t  and t>e s t s b i l i t y  augmentation system 
The aerodynamic loads 

fi  push or  nose-dom control  input i s  now used 

Several other problem have been encountered as a r e s u l t  of t h e  lack  

One p i t f a l l  normally encountered i n  simulator evaluations of 
of proper s i m l a t i o n  of the f l i g h t  phases i n  which t h e  p i l o t  uses ex terna l  
vision. 
f l a e  and landing was avoicied, however. 
not done i n  f l i g h t  tend t o  ind ica te  the d e s i r a b i l i t y  02 a f lare  from 
m a x i m u m  L/D as optimm. 
the  r e s a t  obtained. Tine reasor, Tor tinis erroneous conclusion i s  t h e  
i n z b i l i t y  t o  handle pos t f l a r e  f l o a t  time. Heights o f  2 t o  3 feet  a r e  
d i f f l c - f i t  t o  judge even with tine best  v i sua l  displays, and closing rate 
with t h e  runway, or a tendency t o  balloon, i s  not readily detectable.  

7 l a re  and landing simulations 

Even w2-ch a v i sua l  display, t h i s  i s  general ly  

X-15 performance simulations using an F-104 a i r c r a f t  during approach, 
flare, and landing indicated t h e  d e s i r a b i l i t y  of having ex t ra  airspeed 
during approach and f l a r e .  
c q a b i l i t y  throughout and gave the  p l l o t  an ex t ra  g margin during f l a r e  t o  
adjust h i s  r a t e  of f lare as h i s  perception improved near t h e  ground. 
p o s t f l a r e  time provided by the  excess airspeed p re f l a re  w a s  usef'ul i n  
making f i n a l  adjustnents prior t o  touchdown and f o r  extending t h e  gear 
a f t e r  f l a r e  completion. 
t h e  during an ac tua l  landing. 
comon and, even a t  tne  high touchdown airspeeds (190 knots), v e r t i c a l  
v e l o c i t i e s  l e s s  than 4 fps  z re  cocaon. 

This addi t ional  speed provided b e t t e r  control  

The 

Tnere i s  no problem i n  handling pos t f l a r e  f l o a t  
X-2.3 f l o a t  times of 13 t o  20 seconds are 

A v i sua l  display i s  c o t  adequate f o r  landing simulation unless it can 
s t imulate  t n e  p i l o t  t o  respond with the  same control  rates, frequencies, 
and a q d i t u d e s  as obtained i n  f l i g h t .  
tic if it dces r?n+ pcrv5d.e a p i l o t  with the  capabi l i ty  t o  handle pos t f l a r e  
f l o a t i n g  . 

The simulation i s  a l s o  not red is -  

Xotion.- h g u l a r  notion cues were a lso omitted i n  t h e  X-12 simulator. 
Linear and angular accelerat iocs  can a f f ec t  t h e  p i l o t ' s  control  capabi l i ty  
t o  respond t o  a pa r t i cu la r  f l ight,condition. 
motion cues w i l l  assist t h e  p i l o t  i n  control l ing t h e  airplane. 

I n  ce r t a in  instances t h e  
I n  other  



i; l&ter&-di rec t iona l  problera ecco-mtered i n  t h e  X-13 with t h e  
o r ig ina l  t a i l  design gave c s  &Y o2portunity t o  e v a h a t e  t h e  e f f e c t  of  
xotior, cues on p i l o t  control  capa j i l i ty .  
hir?lme was used t o  fur ther  invest igate  t h i s  condition i n  f l i g h t .  
r e s u l t s  ase shown i n  f igure 5.  
history,  tkie p i l o t  (using a center s t i c k )  attempted t o  hold t h e  s t i c k  
fixed. 
small control  i n p i s  and increase t h e  a q l i t u d e  of the  osc i l l a t ion .  
Tine osc i l l a t ions  daqed ,  however, wi t ' ?  hands of f .  When t h e  p i l o t  at- 
te rq ted  to apply conventional corrective coS?Lrol, t h e  amplitude again 
iccreased. Tne use of a s ide  s t i c k  i n  t h e  X-13 a l lev ia ted  t h e  problem 
of inadvertent control  inprbs. 
which w a s  developed on t h e  simulator and demonstrated i n  f l i g h t ,  could 
enable t h e  p i l o t  t o  cor,trol and ef fec t ive ly  Cimp this type of a i rplane 
motion. 
appreciation of t h i s  pa r t i cu la r  problem. 

An F-100C var i ab le - s t ab i l i t y  

During t h e  i n i t i a l  port ion of t h e  t i m e  
The 

%ne airplane motions cmsed the p i l o t  t o  inadvertent ly  apply 

An mconventional control  technique, 

Tne lack  of motion i n  the  fixed-base simulator prevented a f u l l  

CONCLUDING REX.U?XS 

Although r e l a t i v e l y  sophistica%ed fixed-base simulation of t h e  X-15 P. 
was GenerKLly sa t i s f ac to ry  for flight-uinission s tudies  and flight-envelope- 
c o n t r o l l a b i l i t y  investigations,  all or" Yne f l i g h t  problem experienced 
were not predicted, pa r t i cu la r ly  when differences i n  aerodynamics, cont ro l  
system, or cockpit equipnent existed between simulator and airplane.  
frequent updating of the  s i m u l a t o r  i s  therefore  required. Absence of 
accelerat ion,  motion, or v i sua l  cues i n  t h e  simulator has l imi ted  t h e  
adeqdacy of p i l o t  t ra in ing  f o r  spec i f ic  f l i g h t  phases and sqmetimes 
r e su l t ed  i n  surpr ises  or in - f l igh t  problems. 

A 

The ac tua l  f l i g h t  environ-xent ;rust s t i l l  be investigated,  s ince t h e  
e f f e c t s  of apprehension and anxiety on t h e  p i l o t  cannot yet  be simulated. 
It i s  s inp le  t o  eva lmte  a f l i g h t  condition on a simulator, rate t h e  
t s s k  szhJecti..rely, z d  rese t .  w h e ~  yni1 lose control.  Unt i l  a reset caDa- 
b i l i t y  i s  provided i n  t h e  airplane,  tine success of a mission i s  s t i l l  up 
to t h e  p i l o t .  
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MECHANISM OF VIBRATION 
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